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ABSTRACT

Asymmetric domino Michael�acetalization reactions of 2-hydroxynitrostyrene and 2-oxocyclohexanecarbaldehyde with a bifunctional thiourea-
tertiary-amine organocatalyst, e.g., the Takemoto catalyst, followed by oxidation providing the 10,3-spiro-20-oxocyclohexan-3,4-dihydrocoumarin
having one all-carbon quaternary stereocenter with excellent diastereo- and enantioselectivities (up to >99% ee), are described. The structures
and absolute configurations of the products were confirmed by X-ray analysis.

Recent advances in cascade and sequential organocata-
lysis have provided a new approach for efficient stereo-
selective production of a wide spectrum of cyclic mole-
cules. Among them, organocatalytic annulations, e.g., the
[4þ 2],1 [3þ 3],2 [3þ 2],3 [4þ 3],4 [1þ 2þ 3],5 [1þ 2þ 2],6

[2þ 2þ 2]7 annulations, represent the most intriguing and

efficient protocols since multiple bonds and contiguous
stereocenters can be constructed in a one-pot operation.
Coumarins anddihydrocoumarinderivatives are prevalent
in nature, and many of the derivatives exhibit diverse
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biological activities, including antineoplastic activity,8

antiherpetic activity,9 and inhibition of protein kinases,10

aldose reductase,11 and HIV-1 reverse transcriptase.12

Consequently, extensive synthetic studies of this skeleton
have been reported, including the synthesis of 3,4-disubsti-
tuted dihydrocoumarins,13 3,4-dihydro-4-alkyl-2H-chromen-
2-ol,14 and tetrahydro-6H-benzo[c]chromen-6-oneswere.15

However, few examples have concerned the preparation
of 3,3-dialkylchroman-2-ones,16 a unique skeleton possess-

ing pharmacologic activities.17 Considering the above
background in the context of organocatalytic asymmetric
reactions,18 we envisioned an approach to this system via a
dominoMichael�acetalization reaction19of 2-hydroxynitro-
styrene20 and 2-oxocyclohexanecarbaldehyde,21 followed
by an oxidation (Scheme 1). Herein, we describe the
examples of enantioselective organocatalytic domino
Michael�acetalization reactions of 2-hydroxynitrostyrene
(2) and2-oxocyclohexanecarbaldehyde(1).Thismethodology
permits production of 10,3-spiro-20-oxo-cyclohexan-3,4-dihy-
drocoumarin, with an all-carbon quaternary stereocenter22

and the spirane system,23 andprovides theproduct in excellent
yieldsandstereoselectivitieswithup toa>20:1diastereomeric
ratio (dr) and 99% enantiomeric excess (ee).
Initially, 1a and 2a were treated with Jørgensen�Hayashi

catalyst I�HOAc (20 mol %). No desired Michael�
acetalization hemiacetal product (3a) was observed, but

Scheme 1. Retrosynthetic Analysis
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instead an enamine intermediate 4awas obtained (Table 1,
entry 1) (Scheme 2).24,25

Conducting the reaction with thiourea and urea deriva-
tives II and III as catalysts for 48 h also provided none of
the expected product 3a (Table 1, entries 2�3). To trigger
the reaction, we then turned our attention to the use of
Brønsted base catalysts, e.g., IV, V, and VI. While these
catalysts afforded the Michael�acetal adducts, the yields
were low (26�33% yields of 3a after the in situ PCC
oxidation of Michael�acetal adducts (Table 1, entries

4�6)). Notably, the reactions with catalystsV andVI gave

better enantioselectivities than those with catalyst IV or

Et3N (�40 and �42% ee vs 0% ee, Table 1, entries 4�7).

The subtle improvement in enantioselectivity may be

attributed to the multiple H-bonding effect arising from

the interaction of the hydroxy group on catalystsV andVI

with the nitro group during the reaction progress. This

assumption was further supported by the reaction with

Takemoto catalyst VII to afford 67% yield of 3a and

excellent enantioselectivity (97% ee, Table 1, entry 8).

Presumably, the thiourea portion of the catalyst activated

the electrophile while the amine segment activated the

nucleophile. Surprisingly, with catalyst VII the Michael�

acetalization step was completed in only 20 min; appar-

ently, the bifunctional chiral double H-bonding and the

Brønsted base activities not only facilitate the reaction rate

but also provided a suitable asymmetric inductionmedium

for the reaction.Replacement of Takemoto catalystVII by

chinchona thiourea catalyst VIII gave a somewhat lower

yield and slower reaction (Table 1, entry 9). Moreover,

performing the reaction with less catalyst loading was

feasible, as only 2 mol % of VII was effective with a slight

reduction in enantioselectivity, although a longer reaction

Table 1. Screening of Catalysts and Optimization of Conditions
for the Domino Michael�Acetalization Reaction of 1a and 2aa

entry catalyst solvent timeb (h) yield (%)c ee (%)d

1 Ie CH2Cl2 24 ∼0 na

2 II CH2Cl2 48 ∼0 na

3 III CH2Cl2 48 ∼0 na

4 IV CH2Cl2 22 33 12

5 V CH2Cl2 12 28 �40

6 VI CH2Cl2 12 26 �42

7 NEt3 CH2Cl2 20 21 0

8 VII CH2Cl2 0.33 67 97

9 VIII CH2Cl2 1 52 97

10 VII CH2Cl2
f 38 57 87g

11 VII toluene 0.33 65h 97

12 VII THF 48 59h nd

aUnless otherwise noted, the reactions were performed in the pre-
sence of 10mol% catalyst and in 0.11Mof 1awith a 1/1 ratio of 1a/2a at
ca. 25 �C. bReaction time forMichael�acetalization. c Isolated yields of
the adducts 3a. dEnantiomeric excess (ee) determined by chiral column
chromatography (Chiralpack IA). e 20mol%of Iwas used alongwith 20
mol % of HOAc as additive. f 2 mol % catalyst was used. gDetermined
by chiral column chromatography (Chiralpack IC). h Solvent was
changed to CH2Cl2 prior to the subsequent PCC oxidation.

Table 2. Scope of the DominoMichael�Acetalization Reaction
of 1a and 2aa

aUnless otherwise noted, the reactions were performed in the presence
of 10mol%catalyst and in 0.11Mof 1awith a 1/1 ratio of 1/2 at ca. 25 �C.
bReaction time forMichael�acetalization. c Isolated yields of the adducts
3. dEnantiomeric excess determined by chiral column (Chiralpack IC).
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time was required to complete the reaction (Table 1, entry
10). The same reaction proceeded smoothly in toluene but
required changing the solvent to CH2Cl2 for the subsequent
PCC oxidation (Table 1, entry 11). Conducting the reaction
in THF gave a lesser yield and required a longer time for
completion (Table 1, entry 12). Reactions performed in
other polar solvents (e.g., CH3CN, DMF, EtOH) were not
successful and gave much lower yields.
Having established the optimal reaction conditions

(Table 1, entry 8), we next examined the scope and
limitations of the above system with variants of 1 and 2.
The reaction appears quite general with respect to the
substrates tested, providing the desired adducts with
excellent ee values and dr (>20:1) in good yields (Table 2).
All of the Michael�acetal reactions were completed in
<0.5 h.Most of the reactions of tetrahydro-1-oxonaphtha-
lene-2-carbaldehydes afforded the adduct in excellent
enantioselectivities, while the same conditions for 2,
3-dihydro-1-oxo-1H-indene-2-carbaldehyde and 2-oxo-
cyclopentanecarbaldehyde gave somewhat lower enantio-
selectivities (Table 2, entries 9�10).26 The structures and
absolute configurations of the products were assigned
based on the X-ray analysis of (þ)-3a and (þ)-3b
(Figure 1). To explain the stereochemistry of this transfor-
mation, a plausible mechanism was proposed, as shown in
Scheme 2. Activation of the nitrostyrene was achieved by
intermolecular H-bonding of the thiourea moiety on the
Takemotocatalyst; simultaneously, the tertiaryamineportion
of the catalyst, acting as the Brønsted base, assisted in the

enolization of the ketoaldehyde and triggered the Michael
addition to the nitrostyrene from the Re face, as depicted in
Scheme2.Anyotherchelatingorientationof the tworeactants
would cause serious steric hindrance during the attack, or
alternatively, the reactantswould be too far apart for effective
approach.Theresulting intermediate subsequentlyunderwent
acetal formation to give the Michael�acetal adduct.27,28

In summary, we have realized an asymmetric domino
Michael�acetalization reaction of 2-hydroxynitrostyrene
and2-oxocyclohexanecarbaldehydewithaTakemotocatalyst
followed by an oxidation to provide the 10,3-spiro-20-oxocy-
clohexan-3,4-dihydrocoumarinhavinganall-carbonquatern-
ary stereocenter with excellent diastereo- (>20:1) and
enantioselectivities (up to >99% ee). The reaction not only
adds to the limited repertoire of examples of organocatalysis
of 1,3-ketoaldehydes and the asymmetric construction of
quaternary carbonsbutalsodemonstrates aproofof principle
of the synchronous action of a Brønsted base and a H-bond-
ing mode of catalysis. The methodology has achieved asym-
metric reactions that cannot be otherwise catalyzed by
enamine catalysts, e.g., a Jorgensen�Hayashi catalyst. The
low catalyst loading and the facile Michael�acetalization
reaction further demonstrate the merit of this model. The
structures and absolute configurations of the products
were confirmed by X-ray analysis of the appropriate
adducts. Further work is underway to explore the syn-
thetic applications of this procedure.
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Scheme 2. Plausible Reaction Mechanism

Figure 1. Stereo plots of the X-ray crystal structures of (þ)-3a
and (þ)-3b: C, gray; N, blue; O, red; Br, purple.
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